MTA-BME Quantum Information Theory Research Group
Achievements
- Determination of the strong converse exponent of classical-quantum channel coding with constant composition codes.
- Determination of error exponents in composite quantum state discrimination.
- Determination of the strong converse exponent of dsicriminating infinite-dimensional quantum states.
- Determination of the error exponents and strong converse exponents of various entanglement transformation tasks.
- Introduction of new entanglement measures.
Publications
1. Milán Mosonyi, Zsombor Szilágyi, Mihály Weiner. On the error exponents of binary quantum state discrimination with composite hypotheses. IEEE Transactions on Information Theory, 68(2):1032-1067, (2022)
doi: 10.1109/TIT.2021.3125683
2. Christopher Perry, Péter Vrana, Albert H Werner. The semiring of dichotomies and asymptotic relative submajorization. IEEE Transactions on Information Theory, 68(1):311–321, (2022)
doi: 10.1109/TIT.2021.3117440
3. Péter Vrana. Asymptotic continuity of additive entanglement measures. IEEE Transactions on Information Theory, (2022), doi: 10.1109/TIT.2022.3143845
4. Milán Mosonyi, Tomohiro Ogawa. Divergence radii and the strong converse exponent of classical-quantum channel coding with constant compositions. IEEE Transactions on Information Theory, 67(3):1668-1698, (2021)
doi: 10.1109/TIT.2020.3041205
5. Péter Vrana, Matthias Christandl. Distillation of Greenberger–Horne–Zeilinger states by combinatorial methods. IEEE Transactions on Information Theory, 65(9):5945–5958, (2019), doi: 10.1109/TIT.2019.2908646
Journals
IEEE Transactions on Information Theory
Projects
NRDI grant no. K 124152, 5 years;
NRDI grant no. KH 129601, 3 years;
Quantum Information National Laboratory of Hungary, Ministry of Innovation and
Technology and the National Research, Development and Innovation Office, 5 years